Inorg. Chem. 2007, 46, 378–380

Inorganic Chemistry

Investigation on the Influence of Particular Structure Parameters on the Anisotropic Spin-Exchange Interactions in the Distorted Wolframite-Type Oxides $Cu(Mo_xW_{1-x})O_4$

Björn C. Schwarz,* Helmut Ehrenberg, Hans Weitzel, and Hartmut Fuess

Institute for Materials Science, Darmstadt University of Technology, D-64287 Darmstadt, Germany

Received October 11, 2006

A spin-dimer analysis of the anisotropic spin-exchange interactions in the distorted wolframite-type oxides CuWO₄, CuMoO₄-III, and Cu(Mo_{0.25}W_{0.75})O₄ was performed by Koo and Whangbo (*Inorg. Chem.* **2001**, *40*, 2161–2169). For Cu(Mo_{0.25}W_{0.75})O₄, a magnetic structure with a magnetic unit cell doubled along the *a* and *b* axes has been predicted, but neutron powder diffraction on Cu-(Mo_{0.25}W_{0.75})O₄ did not confirm such a magnetic structure. In the present work, a detailed spin-dimer analysis, considering the influence of particular atomic structure parameters, finally revealed that a wrong coordinate transformation of the Cu z coordinate of the Cu(Mo_{0.25}W_{0.75})O₄ structure is responsible for the prediction of the new, hypothetical magnetic structure. The deviation from the correct value is too small to be recognized by unreasonable bond lengths or angles but is sufficient to change one specific calculated value that is responsible for the prediction of the hypothetical magnetic structure.

CuWO₄ crystallizes in a triclinic, distorted wolframitetype structure and can approximately be described as a hexagonal close packing, with the cations occupying half of the octahedral sites. CuO₄ and WO₄ zigzag chains consisting of cis-edge-sharing CuO₆ and WO₆ octahedra, respectively, are corner-connected and run along the *c* direction.¹ At 23.0-(2) K, the magnetic moments of the Cu²⁺ ions order threedimensionally antiferromagnetic (AFM), with the magnetic unit cell doubled along the *a* axis.^{2,3} CuMoO₄-III is a metastable modification that is isostructural with CuWO₄ and also undergoes three-dimensional AFM ordering at low temperatures, but with the magnetic unit cell doubled along the *c* axis, in contrast to CuWO₄. Ehrenberg et al. compared the crystallographic and magnetic structures of CuWO₄ and CuMoO₄-III in order to gain insight into the model of spin-

(1) Khilborg, L.; Gebert, E. Acta Crystallogr. 1970, B26, 1020.

Figure 1. Section of a CuO₄ chain in CuMoO₄-III. The (Cu₂O₁₀)^{16–} cluster ion representing the J_1 (A) superexchange coupling path (dashed lines) is darkened. Arrows represent magnetic moments.

exchange interactions.⁴ Their analysis was restricted to geometrical considerations of the exchange paths. Koo and Whangbo developed that model further based on spin-dimer analysis in the frame of the extended Hückel theory. For a detailed description of the content of the following part and a description of the strength and weakness of the extended Hückel method, the reader is referred to the publication of Koo and Whangbo.⁵ There are two different superexchange paths (Cu-O-Cu coupling) within the CuO₄ chains (Figure 1). The corresponding spin dimers representing a coupling path are two edge-sharing CuO₆ octahedra that form a (Cu₂O₁₀)¹⁶⁻ cluster ion. A spin dimer that represents a supersuperexchange path (Cu–O····O–Cu coupling) between two Cu atoms belonging to two different CuO₆ chains is represented by two $(CuO_6)^{10-}$ ions that form a $(Cu_2O_{12})^{20-}$ cluster ion. For each cluster ion, an extended Hückel calculation is performed and the difference of energy Δe between the highest occupied molecular orbital and the lowest unoccupied molecular orbital is determined. The spinexchange parameter J of a spin dimer is the sum of a ferromagnetic term $J_{\rm F}$ and an AFM term $J_{\rm AF}$, and it is assumed that the latter can be expressed approximately by $J_{\rm AF} \approx -(\Delta e)^2$. The ferromagnetic part $J_{\rm F}$ of the exchange parameter is assumed to be comparably small and not so sensitive to the geometry of the coupling paths. It is therefore

⁽²⁾ Weitzel, H. Solid State Commun. 1970, 8, 2071.

⁽³⁾ Forsyth, J. B.; Wilkinson, C.; Zvyagin, A. I. J. Phys.: Condens. Matter 1991, 3, 8433.

 ⁽⁴⁾ Ehrenberg, H.; Wiesmann, M.; Garcia-Jaca, J.; Weitzel, H.; Fuess, H. J. Magn. Magn. Mater. 1998, 182, 152.

⁽⁵⁾ Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2001, 40, 2161.

Table 1. Δe Values (in meV) for Spin Dimers (a) in CuWO₄¹ As Published in Reference 5, (b) in CuMoO₄-III⁴ As Published in Reference 5, (c) in Cu(Mo_{0.25}W_{0.75})O₄⁶ As Published in Reference 5, and (d) As Calculated for Corrected Crystal Structure Published in Reference 6

exchange path			
a	b	с	d
S	uperexchange		
48	47	82	49
13	22	22	15
Supe	er-superexchan	ge	
49	47	40	47
77	73	74	75
204	214	214	197
	a 48 13 5 49 77 204	exchan a b Superexchange 48 48 47 13 22 Super-superexchan 49 47 73 204 214	exchange path a b c Superexchange 48 47 82 13 22 22 Super-superexchange 49 47 40 77 73 74 204 214 214

possible to calculate the qualitative trends in the J parameter of extended AFM solids by extended Hückel theory. Koo and Whangbo used the single-crystal X-ray structures of the isostructural compounds CuWO4 and CuMoO4-III and the mixed crystal Cu(Mo_{0.25}W_{0.75})O₄ and calculated the Δe values for a variety of spin dimers within the extended Hückel theory. The Δe values were used to deduce, in a qualitative manner, the three-dimensional magnetic structures. The magnetic structure of Cu(Mo_{0.25}W_{0.75})O₄ has not been determined experimentally and should be predicted. The calculations of the Δe values showed that for all compounds there are three important super-superexchange paths, namely, $J_9(A)$, J_8 , and $J_6(B)$, and two superexchange paths, namely, $J_1(A)$ and $J_1(B)$. All other coupling paths had Δe values smaller than that of $J_1(B)$ and were not listed. For CuWO₄ as well as for CuMoO₄-III, the Δe values decrease in the following order: $J_9(A) \gg J_8 > J_6(B)$, $J_1(A) > J_1(B)$ (parts a and b of Table 1). Koo and Whangbo deduced that $J_9(A)$ and J_8 build "two-leg AFM ladder chains" that are coupled by $J_6(B)$ to form two-dimensional AFM sheets (Figure 2). $J_1(A)$, J_8 , and $J_6(B)$ form a triangular arrangement, leading to magnetic frustration. Because $J_6(B)$ is a super-superexchange path, whereas $J_1(A)$ is a superexchange path, $J_1(A)$ has a stronger ferromagnetic term that is not represented in the Δe value so that $J_1(A)$ finally couples ferromagnetically in the triangular arrangement. The two-dimensional AFM sheets exist in CuWO₄ and CuMoO₄-III, but the way the magnetic sheets are coupled via $J_1(B)$ is different. $J_1(B)$ is smaller in CuWO₄ ($\Delta e \approx 13$ meV) than in CuMoO₄-III (Δe ≈ 20 meV), and it is concluded that the two-dimensional AFM sheets couple ferromagnetically in CuWO₄ and antiferromagnetically in CuMoO₄-III, leading to the two different magnetic propagation vectors. For Cu(Mo_{0.25}W_{0.75})O₄, the Δe values are all comparable in size with those for CuWO₄ or CuMoO₄-III except the Δe value representing the $J_1(A)$ coupling path calculated about twice as big as for the end members (Table 1c). The preceding analysis predicts a magnetic unit cell of Cu(Mo_{0.25}W_{0.75})O₄ doubled along the a axis as well as along the b axis.⁵ This prediction of a new magnetic structure was not confirmed by neutron powder diffraction experiments!⁷

Figure 2. Two-dimensional AFM sheet present in CuWO₄ and CuMoO₄-III. $J_9(A)$, J_8 , and $J_6(B)$ are super-superexchange paths, and $J_1(A)$ is a superexchange path. Black and white circles represent Cu²⁺ sites with up and down spins, respectively.

As a consequence of the contradiction between the prediction of theory and the experimental results, the calculations of the Δe values are extended. The aim is the verification, whether the change of the Δe values, comparing those for CuWO₄ with those of Cu($Mo_{0.25}W_{0.75}$)O₄, can be ascribed mainly to the change of a particular structural parameter. Therefore, the Δe values for the most important coupling paths in CuWO₄ are calculated as described above using the CAESAR package.⁸ Then, a single structural parameter (e.g., the x coordinate of the Cu atom) is changed stepwise from the value it has in CuWO₄ to the value it has in Cu(Mo_{0.25}W_{0.75})O₄, and for each step, all Δe values are calculated, respectively. Consequently, here the absolute change of the Δe values caused by the partial change of a single structure parameter is the product of the sensitivity of that Δe value to the change of the particular structural parameter (partial derivation) and the absolute change of the parameter from one structure to the other. The linear interpolated, stepwise change of the structural parameters is simply done for more clarity. The crystal structure of the end member as well as that of the "mixed crystal" are described by the six metric parameters a, b, c, α , β , and γ and three spatial coordinates for each of the six atoms on general sites in the asymmetric unit. There are one Cu site, four O sites, and one common W/Mo site. Figure 3 shows, for example, how Δe values change when the x coordinate of the Cu atom is changed stepwise from the coordinate it has in $CuWO_4$ (completeness of displacement = 0) to the coordinate it has in Cu(Mo_{0.25}W_{0.75})O₄ (completeness of displacement = 1): There is no considerable change of any of the Δe values. The same holds approximately for the change of all other structural parameters but is different when the Cu z coordinate is changed (Figure 4). When the Cu z coordinate is changed from the value it has in CuWO₄ to the value it has in Cu(Mo_{0.25}W_{0.75})O₄ and all other structural parameters are kept constant, the Δe value representing J_1 -(A) changes from 48 to 82 meV. This dramatic change of that particular Δe value is responsible for the prediction of a new magnetic structure, different from those of the end

⁽⁶⁾ Wiesmann, M.; Ehrenberg, H.; Miehe, G.; Peun, T.; Weitzel, H.; Fuess, H. J. Solid State Chem. 1997, 132, 88.

⁽⁷⁾ Ehrenberg, H.; Theissmann, R.; Gassenbauer, Y.; Knapp, M.; Wltschek, G.; Weitzel, H.; Fuess, H.; Herrmannsdörfer, T.; Sheptyakov, D. J. *Phys.: Condens. Matter* **2002**, *14*, 8573.

⁽⁸⁾ Ren, J.; Liang, W.; Whangbo, M. H. Crystal and Electronic Structure Analysis Calculations CAESAR. http://www.primeC.com, 1998.

Figure 3. Evolution of Δe values starting with the structure parameters of CuWO₄ (completeness of displacement = 0) when the Cu *x* coordinate is changed stepwise to the value it has in Cu(Mo_{0.25}W_{0.75})O₄ (completeness of displacement = 1).

Figure 4. Evolution of Δe values starting with the structure parameters of CuWO₄ (completeness of displacement = 0) when the Cu *z* coordinate is changed stepwise to the value it has in Cu(Mo_{0.25}W_{0.75})O₄ (completeness of displacement = 1).

members.⁵ As stated above, the dramatic effect of the partial displacement of the Cu z coordinate on the $J_1(A) \Delta e$ value can be caused by either a high sensitivity of that Δe value to this structural parameter, a large change of that structural parameter itself, or both. Thus, the next step is the investigation into whether the published Cu z coordinate of Cu- $(Mo_{0.25}W_{0.75})O_4$, and with it the magnitude of the change of the structural parameter, is really correct. The original structural data of the measurement (') was refined in a certain triclinic setting: a' = 4.714(2) Å, b' = 5.848(2) Å, c' =4.879(2) Å, $\alpha' = 88.49(2)^{\circ}$, $\beta' = 82.35(2)^{\circ}$, and $\gamma' = 87.52$ - $(2)^{\circ}$. In order to present the crystal structure in the triclinic setting common for the wolframite-type structures (Table 2), the basis transformation a = a', b = c', and c = -b' has to be made. Furthermore, the so-obtained z coordinates have to be modified in order to end in the common basis and origin (see further information). It was actually missed in ref 6 to carry out this calculation instruction for the Cu and W/Mo z coordinates, but the deviation is very small and does not result in obvious wrong bond lengths or angles. Table 1d

Table 2. Corrected Crystal Structure of $Cu(Mo_{0.25}W_{0.75})O_4$ with Wrong Transformed Parameters in Square Brackets

space group P $V_{\rm UC}/Z = 66.56$ Z = 2	$\bar{1}$ $a = 4.714$ $5 Å^3$ $\alpha = 91.51$	(2) Å $b = 5.84$ (2)° $\beta = 92.4$	48(2) Å 48(2)°	c = 4.879(2) Å $\gamma = 82.35(2)^{\circ}$
atom	x	у		z
Cu	0.4940(2)	0.6588(1)	0.24	46(1) [0.2554]
Mo/W	0.0244(1)	0.1735(1)	0.25	48(1) [0.2452]
01	0.2502(10)	0.3534(9)	0.42	63(9)
O2	0.2145(9)	0.8792(8)	0.4281(8)	
O3	0.7344(10)	0.3806(8)	0.0984(9)	
O4	0.7829(10)	0.9076(8	0.05	18(8)

shows the results of the calculation of the Δe values of Cu-(Mo_{0.25}W_{0.75})O₄ using the correct values. There is a dramatic change in the Δe value representing the $J_1(A)$ superexchange path from 82 to 49 meV. Because the correct Δe value for $J_1(A)$ and all other values are comparable in size with those calculated for CuWO₄ and CuMoO₄-III, there is no reason for the prediction of a new magnetic structure for Cu-(Mo_{0.25}W_{0.75})O₄ differing from those of the end members. By a comparison of the Δe values, it is most serious to predict for Cu(Mo_{0.25}W_{0.75})O₄ a CuWO₄-type magnetic structure.

Koo and Whangbo⁵ used the crystal structure, obtained by single-crystal X-ray diffraction, to calculate Δe values that represent the magnetic coupling strengths with the extended Hückel theory. Thus, for Cu(Mo_{0.25}W_{0.75})O₄, a new magnetic structure was predicted. In this work, more detailed extended Hückel calculations, in the sense that the influence of particular structure parameters on the Δe values was considered, even gave the hint that a structure parameter is supposed to be incorrect. Following investigations on the structure parameters indeed revealed that the Cu z coordinate was wrong. The remarkable point is that the deviations were too small to be recognized by obvious incorrect bond lengths or angles. However, because extended Hückel calculations of the spin dimers are so sensitive to small structural changes, the prediction of a different magnetic structure, in contrast to experimental results, allowed one to detect even marginally wrong structure parameters for the reported structure.⁶

Acknowledgment. Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged (Grant WE1542/5-3).

Supporting Information Available: Partial derivation of Δe values to the Cu *z* coordinate, linear interpolation of "mixed" crystal atomic coordinates, transformation of metric and atomic coordinates, and definition of superexchange and super-superexchange spin dimers. This material is available free of charge via the Internet at http://pubs.acs.org.

IC061944D